Search results for "Sublinear function"
showing 10 items of 13 documents
Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems
2017
We study the existence of positive solutions for perturbations of the classical eigenvalue problem for the Dirichlet $p-$Laplacian. We consider three cases. In the first the perturbation is $(p-1)-$sublinear near $+\infty$, while in the second the perturbation is $(p-1)-$superlinear near $+\infty$ and in the third we do not require asymptotic condition at $+\infty$. Using variational methods together with truncation and comparison techniques, we show that for $\lambda\in (0, \widehat{\lambda}_1)$ -$\lambda>0$ is the parameter and $\widehat{\lambda}_1$ being the principal eigenvalue of $\left(-\Delta_p, W^{1, p}_0(\Omega)\right)$ -we have positive solutions, while for $\lambda\geq \widehat{\…
The ends of manifolds with bounded geometry, linear growth and finite filling area
2002
We prove that simply connected open Riemannian manifolds of bounded geometry, linear growth and sublinear filling growth (e.g. finite filling area) are simply connected at infinity.
Four solutions for fractional p-Laplacian equations with asymmetric reactions
2020
We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, whose reaction combines a sublinear term depending on a positive parameter and an asymmetric perturbation (superlinear at positive infinity, at most linear at negative infinity). By means of critical point theory and Morse theory, we prove that, for small enough values of the parameter, such problem admits at least four nontrivial solutions: two positive, one negative, and one nodal. As a tool, we prove a Brezis-Oswald type comparison result.
Three solutions for parametric problems with nonhomogeneous (a,2)-type differential operators and reaction terms sublinear at zero
2019
Abstract We consider parametric Dirichlet problems driven by the sum of a Laplacian and a nonhomogeneous differential operator ( ( a , 2 ) -type equation) and with a reaction term which exhibits arbitrary polynomial growth and a nonlinear dependence on the parameter. We prove the existence of three distinct nontrivial smooth solutions for small values of the parameter, providing sign information for them: one is positive, one is negative and the third one is nodal.
Application of kolmogorov complexity to inductive inference with limited memory
1995
A b s t r a c t . We consider inductive inference with limited memory[l]. We show that there exists a set U of total recursive functions such that U can be learned with linear long-term memory (and no short-term memory); U can be learned with logarithmic long-term memory (and some amount of short-term memory); if U is learned with sublinear long-term memory, then the short-term memory exceeds arbitrary recursive function. Thus an open problem posed by Freivalds, Kinber and Smith[l] is solved. To prove our result, we use Kolmogorov complexity.
Lower space bounds for randomized computation
1994
It is a fundamental problem in the randomized computation how to separate different randomized time or randomized space classes (c.f., e.g., [KV87, KV88]). We have separated randomized space classes below log n in [FK94]. Now we have succeeded to separate small randomized time classes for multi-tape 2-way Turing machines. Surprisingly, these “small” bounds are of type n+f(n) with f(n) not exceeding linear functions. This new approach to “sublinear” time complexity is a natural counterpart to sublinear space complexity. The latter was introduced by considering the input tape and the work tape as separate devices and distinguishing between the space used for processing information and the spa…
Two-way quantum and classical machines with small memory for online minimization problems
2019
We consider online algorithms. Typically the model is investigated with respect to competitive ratio. In this paper, we explore algorithms with small memory. We investigate two-way automata as a model for online algorithms with restricted memory. We focus on quantum and classical online algorithms. We show that there are problems that can be better solved by two-way automata with quantum and classical states than classical two-way automata in the case of sublogarithmic memory (sublinear size).
Phonons of hexagonal BN under pressure: Effects of isotopic composition
2021
Raman scattering experiments on isotopically enriched hexagonal boron nitride have been performed under pressure up to 11 GPa at room temperature. The sublinear increase of the Raman-active E2g mode frequencies has been characterized. The pressure behavior has been analyzed by means of a bond-stiffness–bond-length scaling parameter γ which takes into consideration the vast differences in a- and c-axis compressibilities. The interlayer shear mode exhibits a γ parameter similar to that of graphite, and the mode frequency in isotopically pure samples separates faster at low pressures as a result of van der Waals interactions. Because of the extremely low a-axis compressibility, the intralayer …
Multiplicity of Solutions for Second Order Two-Point Boundary Value Problems with Asymptotically Asymmetric Nonlinearities at Resonance
2007
Abstract Estimations of the number of solutions are given for various resonant cases of the boundary value problem 𝑥″ + 𝑔(𝑡, 𝑥) = 𝑓(𝑡, 𝑥, 𝑥′), 𝑥(𝑎) cos α – 𝑥′(𝑎) sin α = 0, 𝑥(𝑏) cos β – 𝑥′(𝑏) sin β = 0, where 𝑔(𝑡, 𝑥) is an asymptotically linear nonlinearity, and 𝑓 is a sublinear one. We assume that there exists at least one solution to the BVP.
On asymptotic behavior of solutions to higher-order sublinear Emden–Fowler delay differential equations
2017
Abstract We study asymptotic behavior of solutions to a class of higher-order sublinear Emden–Fowler delay differential equations. Our theorems improve several results reported recently in the literature. Two examples are provided to illustrate the importance and advantages of new criteria.